
1m J Sol"bi SfrUfltlf.·... V'll. 2.'. Nt) I. pp I 10. I"lX7
Pran'ed In Grea' Bmaln.

m~1l 7bX~ 'X7 S.\.lXI' ,IXl
Pergamon Journal, Ltd,

ELASTIC INTERACTION OF A CRACK WITH A
MICROCRACK ARRAY-I. FORMULATION OF THE

PROBLEM AND GENERAL FORM OF THE SOLUTION

A. CHUDNOVSKY
Department of Civil Engineering. Mechanics and Metallurgy, University of Illinois at Chicago.

Chicago. IL 60680. U.S.A.

A.OOLGOPOLSKY
Department of Civil Engineering, University of Delaware, Newark. DE 19716. U.S.A.

and

M. KAC'HANOV
Department of Mechanical Engineering. Tufts University. Medford. MA 02155. U.S.A.

(Received 2 November 1984; in revised form 11 September 1985)

Abstract-Elastic interactions of a crack with an array of microcracks located near the tip is
considered. The analysis is based on the potential representations (known also as representation of
cracks by dislocations) and approximation of tractions on the microcracks by polynomials.

INTRODUCTION

Elastic interaction ofa crack with a damage field is considered; the latter being modelled as a
field of microcracks. Vast literature exists on elastic solutions for solids with cracks. These
solutions are either based on the complex variables technique for the 2-D problems or on
numerical procedures or obtained as asymptotic estimates for remotely located cracks (see,
e.g. extensive reviews[ 1,2] and recent publications[3-5]). In this paper a specific
configuration consisting of a dominant crack and an array of microcracks located in a close
vicinity of a crack tip ("small-scale" microcracking) is analyzed. The method of analysis is
based on the combination of the double layer potential technique (integral representation
known also as representation of a crack by dislocations) and Willis' polynomial
conservation theorem[6]. It is applicable to microcrack arrays of an arbitrary geometry. An
advantage of such representations is that they are applicable to both 2- and 3-D problems.
Also, the unknown functions-COOs, or crack shapes-have simple physical meaning
(unlike complex potentials) which suggests the approximating technique. Since the crack­
damage interaction rather than the general many cracks problem is the primary objective of
this work, its relation to the literature on elastic crack solutions and various series techniques
is not discussed.

The displacement field.in a linear elastic solid generated by a single crack can be
represented by an integral of the double layer potential type, with the displacement
discontinuity-<:rack opening displacement (COD) b = b(x) being the potential density[7] as

u(x) =f b(x') ·$(x', x) dx'

'"
(1)

where w is a crack surface (line t, in a two-dimensional case) and CJ) is the second Green's
tensor which can be interpreted as the displacement response at point x to a unit intensity
force dipole applied at point x' and the integral is to be understood in the principal value
sense when x ..... x'. In the plane stress problem, the second Green's tensor is given as
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where n.,' is the unit normal vector in the direction of the force dipole at point x'. I is the
isotropic tensor. R = x' -x is the position vector and \' is the Poisson's ratIO.

The stress field generated by a crack is given by

O'(x) = T x Lb(x')' $(x'. x) dx'

where T., denotes the stress operator transforming u into stresses

(3)

(4)

where 1/ and ), are Lame's constants, (jij is Kronecker's delta, and i,j = 1,2. Index "x"
indicates that differentiation in T is performed with respect to x. Note that representations
(I) and (3) are valid in both two- and three-dimensional cases with a suitable second Green's
tensor $ chosen.

Using representations (1) and (3) for the system "crack-microcrack array" the problem
can be reduced to the one of finding vectorial functions-microcrack COOs b(x) and the stress
intensity factor K at the macrocrack tip from the system of integral equations expressing the
boundary conditions on the crack faces. The microcrack COOs are sought in the form
(ellipse) x (polynomial) where the first multiplier corresponds to the crack embedded into a
uniform stress field and the second multiplier accounts for crack interactions. Such a
representation is based on approximation of the stress field induced along the line of
a given crack by other cracks by polynomials and the theorem on polynomial
conservation[6] stating that the COD of a crack embedded into a polynomial stress field of
degree N has the form (ellipse) x (polynomial of degree N). Thus, the system of singular
integral equations reduces to a system of linear algebraic equations for the polynomials'
coefficients. This system can be easily solved if the number of microcracks is not too large. If.
however, microcracks are numerous, the system becomes inconvenient for analysis. For this
case the alternative iterative approach, leading to approximate analytical solution, is
suggested. The iterations have clear physical meaning: the zeroth iteration corresponds to
the stress field 0'''' due to remotely applied loads in the absence of cracks, the first iteration
gives the stress field generated by non-interacting cracks embedded into the (TOO-field, the
second and next iterations correspond to the first order, double, triple and higher order
multiplicity of crack interactions. Note, also, that the iterative approach is particularly
convenient if the geometry of the microcrack array is known only in statistical terms.

In Part I, the formulation of the problem and general form of the solution are
considered. In Part II, the technique is applied to two simple 2-D configurations (involving
one and two microcracks) and the problem of "stress shielding" and "stress amplification"
are discussed.

FORMULATION OF THE PROBLEM

The configuration considered here is two-dimensional and consists of the main crack
(- 10 ,/0 ) with the crack tips surrounded by microcrack arrays. The stress field in the vicinity of
the macrocrack tip can be represented as a superposition:

N

(T(x) = (TOO +c7(x) + L (Tj(x)
i=1

(5)

where (TOO is the stress field due to remotely applied loads in the absence of all cracks; c7 and O'j

are the stress fields generated by the main crack and by the ith microcrack, correspondingly.
More exactly, (Tj is the stress field in an infinite elastic plane containing one ith crack, with
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faces loaded by tractions
3

where Xi ana OJ denote the position vector along the ith microcrack and thc unit normal
vector Lo it; a(x j ) and O'k(X j ) are Lhe actual stresses generaLed by Lhe main crack and the kLh
microcrack along the line Ii of the ith microcrack.

Denoting the COOs of the main crack and of thc microcracks hy vectorial functions
bo(:<o) and bj(x j), correspondingly (xo and Xi arc the coordinates along the main crack and
ith microcrack) we can represent the stress fields aand 0'; as T x k bo(.x') ·cJ)(x', x) dx' and
T., I" b;(x') 'cJ)(x', x) dx j • The N + I unknown functions hi are Lo be determined from N + I
vectorial integral equations expressing the traction-free boundary conditions on the crack
faces:

(a) on microcracks:

OJ '[T", f, bo(x') ·cJ)(x', Xi) dx'
I"

+ i Tx r bk(x')'cJ)(x',xj)dx'+Tx rb;(x')·cJ)(x', xJ dX'+O'oo] = 0 (6)
k= I JI. J"
k¢;

i = 1, .. . ,N

(It is convenient, for computational purposes, to move the stress operator T", under the
integral sign. Then the last integral in the brackets becomes divergent, even in the principal
value sense, so that direct substitution X = Xj in the boundary condition on the ith crack
becomes impossible. It can be shown that the limiting value of this integral as x -+ X j is given
by the following regularization[8]

lim T", f, b(x')·cJ)(x', x) dx' = r [b(x')-b(x)] ·T",[cJ)(x', x)] dx'
~-~, " J"

where the integral on the right is to be understood in the principal value sense.)

(b) on the main crack:

no·[.± T\f, b;(X')'cJ)(X',Xo)dX'+T.,f, bo(X')'cJ)(X',Xo)dX'+O'cx]=o (7)
I = I I, '°

and the same remark on regularization of the last integral in the brackets applies.

GENERAL FORM OF THE SOLUTION

The system of integral equations, eqns (6) and (7), can be conveniently reduced to a
system of linear algebraic equations by making use of Willis' polynomial conservation
theorem[6]. Willis' results are further advanced by deriving the actual relations betwecn
the coefficients of both polynomials. Using these relations and approximating the
tractions induced along a given microcrack line by Taylor's polynomials centered at the
microcrack center we reduce the problem to a system of linear algebraic equations for the
polynomial's coefficients. Note that the linear polynomial approximation, P = I, i.e.
representation of the microcrack COOs as "linearly distorted" ellipses may often be
sufficient. If the traction induced on each of the microcracks Ij by the main crack field is
dominant compared to the tractions due to other microcracks, then, since the microcracks
are small, the main crack field does not change much along each of them and the piecewise
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constant approximatioll (P = 0) appears to be adequate. The examples considered in Part
II can serve as an illustration.

Thus, the boundary conditions on the microcracks can be rewritten in the form

The left-hand side represents the traction on the ith microcrack, the right-hand side
represents the sum of the tractions induced on Ii by the rest of the microcracks by the main
crack and by the remote loading, The terms on the right-hand side are analytic along Ii and
can be represented there by Taylor's polynomials centered at the ith microcrack center
X

o.
I'

'() f '(m)( 0) (x, - xp)m
ao Xj :::: L. a x, ,

m=l m.
(8)

Then the overall traction on the ith microcrack becomes a polynomial of degree P and,
according to the polynomial conservation theorem, the COD of the ith microcrack is a
"polynomially distorted" ellipse, with a Pth degree polynomial:

P (O)m

b () ~ b(m)( 0) Xj- Xj )j Xj = L. i Xj , ej(x j

m=O m.
(9)

where ej(x;) denotes an arc of the ellipse of unit opening with the tips coinciding with the ith
crack tips, Substituting the polynomial representations, eqns (8) and (9), into (6a) and
equating the polynomial's coefficients we obtain a system of2NP linear algebraic equations
for 2NP components of blm)(xP). These relations also contain the unknown quantities a1m)_

the derivatives of the main crack field a(x) = Tx r bo(.x')·cJ)(x',x)dx' with the COD bo ofJ,.
the main crack being an unknown function. The additional equations are provided by the
boundary condition on the main crack. It can be rewritten in the form similar to eqn (6a),
with the left-hand side of the equation being the traction on the main crack and the right­
hand side being the sum of the tractions induced on 1o by the microcracks and by the remote
field aX):

-oo'Tx r bo(x')'cJ)(x',xo)dx' = oo·[.I Tx rb;(.X')'cJ)(X',Xo)dX'+a:x:]. (7a)
J'n 1=1 J,.

Using the polynomial representations (9) for bj. approximating the tractions along 10 given
by the right-hand side of eqn (7a) by Taylor's polynomials centered at the main crack
center xg, representing the COD bo of the main crack in the form (ellipse) x (polynomial)
and, finally, invoking the relations between the coefficients of polynomial loading and the
polynomial coefficients of COD, we obtain the additional 2P relations for the components of
b~m)(x?) and b\)')(xg).

The only known quantities contained in the mentioned relations are Ok 'aOO(m'(xr) (k =
0, 1, ... , N)-directional derivatives of the remote field taken along the crack lines and
evaluated at their centers xr or, in the case of a uniform field a oo

, the tractions Ok ·a"'. The
unknowns - b;'s and bocan therefore be found in terms of the aoo-related quantities; the total
stress field in the microcracking zone can then be determined by substitution of the COOs in
the potential representation (3).

Below, the important case of "small scale" microcracking is considered when the
microcracks can be treated as embedded into the crack tip field of the main crack. Then the
stress a OO can be neglected as compared to a. We assume, for simplicity of calculations, that
the main crack undergoes a pure mode I loading and that the microcrack array is symmetric
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with respect to the main crack line, so that the mode I conditions on the main crack are not
violated. Then ~(x) = KflT(Jo(x) where (Jo(x) = fP[O(x)]IJ(2nr(x)) is the standard mode I
crack tip field (r and (1 are polar coordinates in the main crack tip coordinate system) and K~lT

is the "effective" stress intensity factor at the main crack tip, with the account of the influence
of microcracks.

Thus, the stress field generated by the main crack. can be expressed in terms ofjust one
unknown parameter KilT (rather than a number of unknown coefficients b~m) of Taylor's
approximation of bolo Omitting (Ja::, we can represent the stress field in the microcracking
zone in the form

An additional equation for KIf[ reflects the impact of the microcrack array:

1 f'O J(I +~) NKif[ =KP+-
J

10
_J' o· L (Jj(x)'odx

(nlo) -10 0" i= 1

(10)

(11)

(K Pis the stress intensity factor in the absense of microcracks). Expressions (10) and (11)
represent stresses and effective stress intensity factor in a close vicinity of the main crack tip.
The only known quantities contained in this system are the field KP(Jo and its directional
derivatives OJ' Kp(J~m)(x?)evaluated at the microcrack centers. The unknowns-microcrack
COOs can therefore be expressed in terms of these quantities; the stress field in the
microcracking zone can then be found by substitution of the COOs in the potential
representation (10).

It should be noted that substitution of the boundary condition (7a) on the main crack by
relation (II) for Kif[, being an adequate representation of KiiT, is not a fully adequate
replacement in general; namely, the traction-free boundary conditions on the main crack
may not be satisfied. This means that the stress field L(Jj generated by the microcracks may
result in non-zero tractions on the main crack but these tractions will produce a zero
contribution to the stress intensity factor Kif[ and thus will not affeet the analysis in the
microcracking zone. Hence, in the vicinity of the main crack tip, the following general
statement on the structure of the stress field in the damage zone can be formulated:

The stress field in the "small scale" microcracking zone is a linear combination of the
mode I main crack tip field K?(Jo(x) in the absence of microcracks and the stress fields
generated by microcracks. The latter are loaded by polynomial tractions which are linear
combinations of the directional derivatives K?oj' (J~m)(x?) taken along the microcracks and
evaluated at their centers. Taking higher order polynomial approximations, i.e. including
higher order derivatives of (Jo, we can make the solution as close to the exact stress field as
desired.

In the piecewise constant approximation, the mentioned tractions are combinations of
projections of the K I(Jo-field onto the microcrack lines.

To make this statement in a more constructive form, the following notations are
introduced:

(1) {t} is the set of mth directional derivatives t(m)(x~) = 0.' K?(J~m)(x~)of the main crack
tip field (in the absense of microcracks) in the direction of the sth microcrack evaluated
at its center x~. Note that the directional derivatives of higher orders are understood in
the following sense: if Y. - y~ = rx(x. - x~) is the equation of the sth microcrack line so that
the stress (J0 = (Jo[x., .v~ + rx(x. - x~)] is a function of x. only, then O'~m)(x~) =
dm/dx:O'o[x., y~ + rx(x. - x~)].

(2) {b} is the set of vector coefficients b~n) of a polynomial which is superimposed on the
elliptical COD e(~k) of the kth microcrack.

(3) {B} = Bmn(x~, xr) is a linear operator which depends on the positions of the centers of
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two microcracks x~, xr and characterizes the influence of the mth derivative of the 5th
microcrack stress field on the 11th derivative of coefficient {b} of the kth microcrack COD,
The expression for {B} is given below,

(4) ( 12)

is a matrix which characterizes the stress associated with the nth derivative of the microcrack
opening coefficient {b} of the kth microcrack at arbitrary point x. Matrix A(x) is the matrix
of the microcrack array; ~k is a coordinate on the kth microcrack, and the integral is taken
along the kth microcrack of length 21k • The components of matrix A(x) are the third rank
tensors.

(5) {Ao} = A2(xk) is a linear operator which characterizes the increase of stress intensity
factor K? due to stresses associated with microcrack opening coefficients {b} of the array,
The components of linear operator {Ao} are vectors. The definition of [Ao} is given below.

The unknown stress field a(x), in the approximation of a "small scale" microcracking,
can be expressed in terms of the asymptotic stress field of the main crack ao(x), the values of
its derivatives abml(xo) in the directions of microcracks evaluated at the centers of
microcracks, and the second Green's tensor (J)({, x) by the formula

or, in index notation

a(x) = ({l} + {B}{t}{AO})ao(x)+ {B} [t}{A(x)}

a(x) = [I + L Bmll(xo, xt)tm(x")Ao(xk)]ao(x)
m.".~.k

+ L Bmll(xij, x~)tm(xo)AlI(xk, x)
m.n,s,k

(13)

(l3a)

where {I} is a unit operator.
The last fonnula can be obtained by the following line of reasoning:
The stress field a(x) for the small scale model is given by formula (6). Equilibrium

equations are automatically satisfied for (6) because of the properties of the asymptotic crack
tip solution and the properties of the second Green's tensor (J)(x', x).

The equations to be satisfied are the boundary conditions on the macrocrack and
each of the microcracks. For the small scale model, the boundary condition on the
macrocrack can be substituted by the equation for effective stress intensity factor K fIT which
fully detennines the asymptotic stress field of the macrocrack

1 flo J(I +x) /I'KfIT = K?+-J 1° _ n(x)n(x)'L aj(x)dx.
(nlo) -I tl ° X ,=1

(14)

Boundary conditions on the microcracks form a system of2N singular integral equations for
2N unknown components of N vectors of double layer potential densities b(x)
(K = 1,2, .. .,N).

ni{,j(Xi)+ ~ Tx { bdx')·(J)(x',xtldx'+Tx { bi(X')'(J)(X',XtldX'} = 0 (15)
k=1 J,. J"
k"i

where Xi is a coordinate on the ith microcrack. Equations (14) and (15) constitute a system
for determination of 2N + 1 unknowns KilT and the components of N vectors bk(x').

Using (11) and (12) the boundary conditions may be written as follows:
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f, p (e" - e~)"
n(x")'Tx L b(II)(~~) I e(e")(J)(~", x,,) d~k =

I, ,,=0 n.

-"tJI n(x~)'Tx Lb("l(,~) (es~!e~)" deS)(J)(,s, xk)des

- K~ITs(x")

s(xlt) = n(x") tp[O(x)] .
J{21tr(x))

7

(16)

(17)

The expression on the left of (16) represents traction on the Kth microcrack which, by
assumption, may be represented as a polynomial. (The left-hand side of (16) contains a
singular integral, when n = 0, which converges in Cauchy's sense.) Consequently, the right­
hand side of (16) (i.e. the traction on the Kth microcrack induced by the rest of the
microcracks and the dominant field) is a polynomial also; then (16) can be rewritten in the
form of a system of equations for the coefficients of the polynomials of the left-hand and
right-hand parts of (16). The procedure described above can be carried out by differentiation
of (16) at point x~ in the direction of the kth microcrack P times. The differentiation results in
the following equation:

P N P N

L L Im,,(x~, X~)bk = - L L Hm,,(x~, X~)bk - K~ITSm(x~)
II=Ok=1 ,,=0"=1

(18)

where Sm(x~) is the mth derivative on the 5th microcrack, m = 0, 1,2, ... , P, S = 1,2, ... , N,
bi: = b(II1(X~). The linear operator Hmm(xox~) is given by the following expression:

{
° when 5 = k

H (XS x") = S s"
mil 0' 0 Tx'f. (e -,eo) e(")(J){m)(,,,x~)'n(x~)deS

S n.

when 5 =I- k

(19)

taken at point x = x~ where (J)(ml(,s, x~) is the mth directional derivative of Green's tensor at
point k taken in the direction of the kth microcrack. Similarly, the linear operator Imm{XO' x~)
is given by the expression:

{
°.......when 5 =I- k

I (XS x") - S. II
mil 00- Tx'f, (e -,eo) e{e')cJ){ml{",x~)n(x~)de'

I n..
when 5 = k.

(20)

The set of elements bi: in (18) constitutes a (P + 1) x N matrix. In symbolic notation equation
(18) may be written as follows:

{I}'[b} = -{H}·{b}-KflT·{s} (18a)

together with eqn (14) for the stress intensity factor KfIT boundary conditions on microcracks
(15) form a system of (P + 1) x 2N + 1linear algebraic equations with (P + 1) x 2N unknown
components of matrix {b} and unknown quantity Kf. Formula (14) with lJ'j{x) given by (3)
and bj(x) given by (12) takes the form

(21)
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where linear operator {A0 j is given by the expression

(22)

with HOII(x~, x) defined by (19), Formula (22) defines linear operator: A0j . Operator: A (l j
characterizes the impact of a microcrack array on the main crack.

Substitution of (21) into (l8a) gives a system of linear algebraic equations for the
determination of {b}

{IHb} = -({H}+ {s}{AO}){b} - [t}.

The last system of equations yields an obvious solution

{b} = {B}{t}

where
fB1 - _(fIl+fH}+fSlfA01)-1l J - I f I I j I J •

Formula (25) defines the linear operator [B}.
In index notation (24) takes the form

/\' fJ

bl: = L L Bmn(x'O' x~)tm(xo)'
s=lm=O

(23)

(24)

(25)

(24a)

Formula (24) represents {b} as a linear function of directional derivatives of the asymptotic
stress field ao(x)(n'ao(x) = K?s(x)). Substitution of (24) and (21) into (6) furnishes (13).

Thus, taking into account the analytic character of the solution of a plane problem of
elastostatics, the resulting stress field a(x) can be approximated by a polynomial as closely as
desired. Consequently, the solution obtained above can be made as close as desired to the
exact one.

It should be noted that each term in formula (13) for the resulting stress field a(x) can be
given a clear physical interpretation; the first term represents the dominating stress field of
the main crack a(x) and the second term represents the stress field of the microcrack array
imbedded into the stress field of the macrocrack a(x). Dominating stress field a(x), in turn.
consists of two terms, the first being the asymptotic stress field of the main crack a o(x), and
the second term results from the impact of the microcrack array (embedded into asymptotic
stress field) on the macrocrack.

ITERATIVE APPROACH

If the number of microcracks N is large then the system of 2N(P + I) + I scalar linear
algebraic equations may become large and inconvenient for analytical solution, even in a
piecewise constant approximation P = O. This is particularly so if the microcrack array
geometry is known only in probabilistic terms.

An iterative approach can be suggested as an alternative to a direct solution. In
formulas (10, 11)

a(x) = KffTao(x) + ±T x rbj(x;) ·CJ)(x;, x) dx;
i= 1 ]"

1 Ii" )(1 +~) NKfrr = K~+--- _0_ 0' L O'j(x)'odx
J(nlo) -I" 10 -~ i= 1
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assume, as a zeroth approximation, (J = KP(Jo (main crack tip stress field in the absence of
microcracks). Succcssivc iterations arc obtained by introducing (J as givcn by (10) back into
(10,11). The first iteration yields

(26)

where (Jj(KP(Jo) denotes the stress field generated by the ith microcrack embedded into the
stress field KP(Jo' Also,

so that

K elT KO I f'O J(/o+~) '\' 0 0
I = I +-JI I _~ nn:L,(Ji(Kl(JO)d~ == K.(I+q)

(n: 0) -10 0" I

(27)

(28)

Thus, the stress field, in the first iteration, is the sum of the following fields: (1) Kp(Jo; (2)
qK?(Jo, i.e. correction to the main crack tip field due to the impact of the microcrack array,
with the latter being embedded into the K?(Jo-field; (3) Lj (Jj(K?(Jo)-response of the
microcrack array to the K,(Jo-field.

The second iteration yields

(J = K~rr(Jo +L (Jj(K~rr(Jo) +L L(Ji[(Jk(K?(Jo)]
i k

where

and

(29)

The new tcrms in the expression for (J introduced in the second itcmtion arc: (I) ('1 2 +q3)Kp(Jo
-next correction to the main crack tip field; (2) L (Jj(KiiT - KP)(Jo = ('1 2 + '1 3

) L (Jj(K P(Jo)­
rcsponse of the microcrack array to the mentioned correction, and (3) (Ji[(Jk(K?(Jo)]-responsc
of the ith microcrack to the stress field generated by the kth microcrack embedded into the
K?(Jo·field; thus, the double sum in the formulas of the second iteration represents a
"secondary" response of the microcrack array to the K?(Jo-field. Similarly, higher order
iterations will represent triple, quadruple, etc. interactions. Figure I illustrates the crack
interactions involved, up to the second iteration (stress field generated by a microcrack is
marked by two zigzag arrowhead lines originating at the crack). Note that two physically
different groups of terms can be distinguished; the main crack tip fields (K~f!(Jo, with
corrections to Kif! accounting for the impact of the microcrack array) and the "diffused"
stress field-sum of the microcrack generated fields.

Note that the actual calculation of the responses (Jj(KP(Jo), (Jj[(Jk(KP(Jo)], etc. involves
the polynomial approximation of the tractions induced along Ii by the other cracks and
the corresponding polynomial representation of bj in the potential formula (Jj(x) =
TxJ"bj(~)·(J)(~,X)de. Thus, the solution (J(x) for the stress field in the damage zone
constructed by iterations assumes two different types of approximation: by the degree P of
the polynomial representation of the tractions along Ii (usually a piecewise constant P = 0 or
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a~

/'D-th Iteration: J
\--..

I-st Iteration:
O~

~, /'
L J 0~

I

0
00

~L J

II-nd Iteration:

~
0

00

3/I ~i I J ~~I 2 I 2
4

LL~'
0

00

,~k2/II d
~\--..I k 3 I k

Fig. 1.

linear P = 1approximation is sufficient) and by the multiplicity of crack interactions taken
into account.
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